object RandomForest extends Serializable with Logging
- Annotations
 - @Since("1.2.0")
 - Source
 - RandomForest.scala
 
- Alphabetic
 - By Inheritance
 
- RandomForest
 - Logging
 - Serializable
 - AnyRef
 - Any
 
- Hide All
 - Show All
 
- Public
 - Protected
 
Type Members
-   implicit  class LogStringContext extends AnyRef
- Definition Classes
 - Logging
 
 
Value Members
-   final  def !=(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def ##: Int
- Definition Classes
 - AnyRef → Any
 
 -   final  def ==(arg0: Any): Boolean
- Definition Classes
 - AnyRef → Any
 
 -    def MDC(key: LogKey, value: Any): MDC
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -   final  def asInstanceOf[T0]: T0
- Definition Classes
 - Any
 
 -    def clone(): AnyRef
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.CloneNotSupportedException]) @IntrinsicCandidate() @native()
 
 -   final  def eq(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -    def equals(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef → Any
 
 -   final  def getClass(): Class[_ <: AnyRef]
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def hashCode(): Int
- Definition Classes
 - AnyRef → Any
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    def initializeLogIfNecessary(isInterpreter: Boolean, silent: Boolean): Boolean
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def initializeLogIfNecessary(isInterpreter: Boolean): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -   final  def isInstanceOf[T0]: Boolean
- Definition Classes
 - Any
 
 -    def isTraceEnabled(): Boolean
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def log: Logger
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logBasedOnLevel(level: Level)(f: => MessageWithContext): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logDebug(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logDebug(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logDebug(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logDebug(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logError(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logError(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logError(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logError(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logInfo(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logInfo(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logInfo(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logInfo(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logName: String
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logTrace(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logTrace(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logTrace(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logTrace(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logWarning(msg: => String, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logWarning(entry: LogEntry, throwable: Throwable): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logWarning(entry: LogEntry): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -    def logWarning(msg: => String): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 -   final  def ne(arg0: AnyRef): Boolean
- Definition Classes
 - AnyRef
 
 -   final  def notify(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -   final  def notifyAll(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @IntrinsicCandidate() @native()
 
 -    val supportedFeatureSubsetStrategies: Array[String]
List of supported feature subset sampling strategies.
List of supported feature subset sampling strategies.
- Annotations
 - @Since("1.2.0")
 
 -   final  def synchronized[T0](arg0: => T0): T0
- Definition Classes
 - AnyRef
 
 -    def toString(): String
- Definition Classes
 - AnyRef → Any
 
 -    def trainClassifier(input: JavaRDD[LabeledPoint], numClasses: Int, categoricalFeaturesInfo: Map[Integer, Integer], numTrees: Int, featureSubsetStrategy: String, impurity: String, maxDepth: Int, maxBins: Int, seed: Int): RandomForestModel
Java-friendly API for
org.apache.spark.mllib.tree.RandomForest.trainClassifierJava-friendly API for
org.apache.spark.mllib.tree.RandomForest.trainClassifier- Annotations
 - @Since("1.2.0")
 
 -    def trainClassifier(input: RDD[LabeledPoint], numClasses: Int, categoricalFeaturesInfo: Map[Int, Int], numTrees: Int, featureSubsetStrategy: String, impurity: String, maxDepth: Int, maxBins: Int, seed: Int = Utils.random.nextInt()): RandomForestModel
Method to train a decision tree model for binary or multiclass classification.
Method to train a decision tree model for binary or multiclass classification.
- input
 Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. Labels should take values {0, 1, ..., numClasses-1}.
- numClasses
 Number of classes for classification.
- categoricalFeaturesInfo
 Map storing arity of categorical features. An entry (n to k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}.
- numTrees
 Number of trees in the random forest.
- featureSubsetStrategy
 Number of features to consider for splits at each node. Supported values: "auto", "all", "sqrt", "log2", "onethird". If "auto" is set, this parameter is set based on numTrees: if numTrees == 1, set to "all"; if numTrees is greater than 1 (forest) set to "sqrt".
- impurity
 Criterion used for information gain calculation. Supported values: "gini" (recommended) or "entropy".
- maxDepth
 Maximum depth of the tree (e.g. depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). (suggested value: 4)
- maxBins
 Maximum number of bins used for splitting features (suggested value: 100)
- seed
 Random seed for bootstrapping and choosing feature subsets.
- returns
 RandomForestModel that can be used for prediction.
- Annotations
 - @Since("1.2.0")
 
 -    def trainClassifier(input: RDD[LabeledPoint], strategy: Strategy, numTrees: Int, featureSubsetStrategy: String, seed: Int): RandomForestModel
Method to train a decision tree model for binary or multiclass classification.
Method to train a decision tree model for binary or multiclass classification.
- input
 Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. Labels should take values {0, 1, ..., numClasses-1}.
- strategy
 Parameters for training each tree in the forest.
- numTrees
 Number of trees in the random forest.
- featureSubsetStrategy
 Number of features to consider for splits at each node. Supported values: "auto", "all", "sqrt", "log2", "onethird". If "auto" is set, this parameter is set based on numTrees: if numTrees == 1, set to "all"; if numTrees is greater than 1 (forest) set to "sqrt".
- seed
 Random seed for bootstrapping and choosing feature subsets.
- returns
 RandomForestModel that can be used for prediction.
- Annotations
 - @Since("1.2.0")
 
 -    def trainRegressor(input: JavaRDD[LabeledPoint], categoricalFeaturesInfo: Map[Integer, Integer], numTrees: Int, featureSubsetStrategy: String, impurity: String, maxDepth: Int, maxBins: Int, seed: Int): RandomForestModel
Java-friendly API for
org.apache.spark.mllib.tree.RandomForest.trainRegressorJava-friendly API for
org.apache.spark.mllib.tree.RandomForest.trainRegressor- Annotations
 - @Since("1.2.0")
 
 -    def trainRegressor(input: RDD[LabeledPoint], categoricalFeaturesInfo: Map[Int, Int], numTrees: Int, featureSubsetStrategy: String, impurity: String, maxDepth: Int, maxBins: Int, seed: Int = Utils.random.nextInt()): RandomForestModel
Method to train a decision tree model for regression.
Method to train a decision tree model for regression.
- input
 Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. Labels are real numbers.
- categoricalFeaturesInfo
 Map storing arity of categorical features. An entry (n to k) indicates that feature n is categorical with k categories indexed from 0: {0, 1, ..., k-1}.
- numTrees
 Number of trees in the random forest.
- featureSubsetStrategy
 Number of features to consider for splits at each node. Supported values: "auto", "all", "sqrt", "log2", "onethird". If "auto" is set, this parameter is set based on numTrees: if numTrees == 1, set to "all"; if numTrees is greater than 1 (forest) set to "onethird".
- impurity
 Criterion used for information gain calculation. The only supported value for regression is "variance".
- maxDepth
 Maximum depth of the tree. (e.g., depth 0 means 1 leaf node, depth 1 means 1 internal node + 2 leaf nodes). (suggested value: 4)
- maxBins
 Maximum number of bins used for splitting features. (suggested value: 100)
- seed
 Random seed for bootstrapping and choosing feature subsets.
- returns
 RandomForestModel that can be used for prediction.
- Annotations
 - @Since("1.2.0")
 
 -    def trainRegressor(input: RDD[LabeledPoint], strategy: Strategy, numTrees: Int, featureSubsetStrategy: String, seed: Int): RandomForestModel
Method to train a decision tree model for regression.
Method to train a decision tree model for regression.
- input
 Training dataset: RDD of org.apache.spark.mllib.regression.LabeledPoint. Labels are real numbers.
- strategy
 Parameters for training each tree in the forest.
- numTrees
 Number of trees in the random forest.
- featureSubsetStrategy
 Number of features to consider for splits at each node. Supported values: "auto", "all", "sqrt", "log2", "onethird". If "auto" is set, this parameter is set based on numTrees: if numTrees == 1, set to "all"; if numTrees is greater than 1 (forest) set to "onethird".
- seed
 Random seed for bootstrapping and choosing feature subsets.
- returns
 RandomForestModel that can be used for prediction.
- Annotations
 - @Since("1.2.0")
 
 -   final  def wait(arg0: Long, arg1: Int): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 -   final  def wait(arg0: Long): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException]) @native()
 
 -   final  def wait(): Unit
- Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.InterruptedException])
 
 -    def withLogContext(context: Map[String, String])(body: => Unit): Unit
- Attributes
 - protected
 - Definition Classes
 - Logging
 
 
Deprecated Value Members
-    def finalize(): Unit
- Attributes
 - protected[lang]
 - Definition Classes
 - AnyRef
 - Annotations
 - @throws(classOf[java.lang.Throwable]) @Deprecated
 - Deprecated
 (Since version 9)