public class FMClassificationSummaryImpl extends Object implements FMClassificationSummary
 param:  predictions dataframe output by the model's transform method.
 param:  scoreCol field in "predictions" which gives the probability of each instance.
 param:  predictionCol field in "predictions" which gives the prediction for a data instance as a
                      double.
 param:  labelCol field in "predictions" which gives the true label of each instance.
 param:  weightCol field in "predictions" which gives the weight of each instance.
| Constructor and Description | 
|---|
FMClassificationSummaryImpl(Dataset<Row> predictions,
                           String scoreCol,
                           String predictionCol,
                           String labelCol,
                           String weightCol)  | 
| Modifier and Type | Method and Description | 
|---|---|
double | 
areaUnderROC()
Computes the area under the receiver operating characteristic (ROC) curve. 
 | 
Dataset<Row> | 
fMeasureByThreshold()
Returns a dataframe with two fields (threshold, F-Measure) curve with beta = 1.0. 
 | 
String | 
labelCol()
Field in "predictions" which gives the true label of each instance (if available). 
 | 
Dataset<Row> | 
pr()
Returns the precision-recall curve, which is a Dataframe containing
 two fields recall, precision with (0.0, 1.0) prepended to it. 
 | 
Dataset<Row> | 
precisionByThreshold()
Returns a dataframe with two fields (threshold, precision) curve. 
 | 
String | 
predictionCol()
Field in "predictions" which gives the prediction of each class. 
 | 
Dataset<Row> | 
predictions()
Dataframe output by the model's  
transform method. | 
Dataset<Row> | 
recallByThreshold()
Returns a dataframe with two fields (threshold, recall) curve. 
 | 
Dataset<Row> | 
roc()
Returns the receiver operating characteristic (ROC) curve,
 which is a Dataframe having two fields (FPR, TPR)
 with (0.0, 0.0) prepended and (1.0, 1.0) appended to it. 
 | 
String | 
scoreCol()
Field in "predictions" which gives the probability or rawPrediction of each class as a
  vector. 
 | 
String | 
weightCol()
Field in "predictions" which gives the weight of each instance. 
 | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitaccuracy, falsePositiveRateByLabel, fMeasureByLabel, fMeasureByLabel, labels, precisionByLabel, recallByLabel, truePositiveRateByLabel, weightedFalsePositiveRate, weightedFMeasure, weightedFMeasure, weightedPrecision, weightedRecall, weightedTruePositiveRatepublic double areaUnderROC()
BinaryClassificationSummaryareaUnderROC in interface BinaryClassificationSummarypublic Dataset<Row> fMeasureByThreshold()
BinaryClassificationSummaryfMeasureByThreshold in interface BinaryClassificationSummarypublic String labelCol()
ClassificationSummarylabelCol in interface ClassificationSummarypublic Dataset<Row> pr()
BinaryClassificationSummarypr in interface BinaryClassificationSummarypublic Dataset<Row> precisionByThreshold()
BinaryClassificationSummaryprecisionByThreshold in interface BinaryClassificationSummarypublic String predictionCol()
ClassificationSummarypredictionCol in interface ClassificationSummarypublic Dataset<Row> predictions()
ClassificationSummarytransform method.predictions in interface ClassificationSummarypublic Dataset<Row> recallByThreshold()
BinaryClassificationSummaryrecallByThreshold in interface BinaryClassificationSummarypublic Dataset<Row> roc()
BinaryClassificationSummaryroc in interface BinaryClassificationSummarypublic String scoreCol()
BinaryClassificationSummaryscoreCol in interface BinaryClassificationSummarypublic String weightCol()
ClassificationSummaryweightCol in interface ClassificationSummary