public class MultilabelClassificationEvaluator extends Evaluator implements HasPredictionCol, HasLabelCol, DefaultParamsWritable
| Constructor and Description | 
|---|
MultilabelClassificationEvaluator()  | 
MultilabelClassificationEvaluator(String uid)  | 
| Modifier and Type | Method and Description | 
|---|---|
MultilabelClassificationEvaluator | 
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params. 
 | 
double | 
evaluate(Dataset<?> dataset)
Evaluates model output and returns a scalar metric. 
 | 
double | 
getMetricLabel()  | 
String | 
getMetricName()  | 
boolean | 
isLargerBetter()
Indicates whether the metric returned by  
evaluate should be maximized (true, default)
 or minimized (false). | 
Param<String> | 
labelCol()
Param for label column name. 
 | 
static MultilabelClassificationEvaluator | 
load(String path)  | 
DoubleParam | 
metricLabel()  | 
Param<String> | 
metricName()
param for metric name in evaluation (supports  
"f1Measure" (default), "subsetAccuracy",
 "accuracy", "hammingLoss", "precision", "recall", "precisionByLabel",
 "recallByLabel", "f1MeasureByLabel", "microPrecision", "microRecall",
 "microF1Measure") | 
Param<String> | 
predictionCol()
Param for prediction column name. 
 | 
static MLReader<T> | 
read()  | 
MultilabelClassificationEvaluator | 
setLabelCol(String value)  | 
MultilabelClassificationEvaluator | 
setMetricLabel(double value)  | 
MultilabelClassificationEvaluator | 
setMetricName(String value)  | 
MultilabelClassificationEvaluator | 
setPredictionCol(String value)  | 
String | 
uid()
An immutable unique ID for the object and its derivatives. 
 | 
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitgetPredictionColgetLabelColclear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwntoStringwritesavepublic MultilabelClassificationEvaluator(String uid)
public MultilabelClassificationEvaluator()
public static MultilabelClassificationEvaluator load(String path)
public static MLReader<T> read()
public final Param<String> labelCol()
HasLabelCollabelCol in interface HasLabelColpublic final Param<String> predictionCol()
HasPredictionColpredictionCol in interface HasPredictionColpublic String uid()
Identifiableuid in interface Identifiablepublic final Param<String> metricName()
"f1Measure" (default), "subsetAccuracy",
 "accuracy", "hammingLoss", "precision", "recall", "precisionByLabel",
 "recallByLabel", "f1MeasureByLabel", "microPrecision", "microRecall",
 "microF1Measure")public String getMetricName()
public MultilabelClassificationEvaluator setMetricName(String value)
public final DoubleParam metricLabel()
public double getMetricLabel()
public MultilabelClassificationEvaluator setMetricLabel(double value)
public MultilabelClassificationEvaluator setPredictionCol(String value)
public MultilabelClassificationEvaluator setLabelCol(String value)
public double evaluate(Dataset<?> dataset)
EvaluatorisLargerBetter specifies whether larger values are better.
 public boolean isLargerBetter()
Evaluatorevaluate should be maximized (true, default)
 or minimized (false).
 A given evaluator may support multiple metrics which may be maximized or minimized.isLargerBetter in class Evaluatorpublic MultilabelClassificationEvaluator copy(ParamMap extra)
ParamsdefaultCopy().