public class KMeans extends Estimator<KMeansModel> implements KMeansParams, DefaultParamsWritable
Modifier and Type | Method and Description |
---|---|
KMeans |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
KMeansModel |
fit(Dataset<?> dataset)
Fits a model to the input data.
|
static KMeans |
load(String path) |
static MLReader<T> |
read() |
KMeans |
setDistanceMeasure(String value) |
KMeans |
setFeaturesCol(String value) |
KMeans |
setInitMode(String value) |
KMeans |
setInitSteps(int value) |
KMeans |
setK(int value) |
KMeans |
setMaxIter(int value) |
KMeans |
setPredictionCol(String value) |
KMeans |
setSeed(long value) |
KMeans |
setTol(double value) |
StructType |
transformSchema(StructType schema)
:: DeveloperApi ::
|
String |
uid()
An immutable unique ID for the object and its derivatives.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
getInitMode, getInitSteps, getK, initMode, initSteps, k, validateAndTransformSchema
getMaxIter, maxIter
featuresCol, getFeaturesCol
getPredictionCol, predictionCol
distanceMeasure, getDistanceMeasure
clear, copyValues, defaultCopy, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, shouldOwn
toString
write
save
initializeLogging, initializeLogIfNecessary, initializeLogIfNecessary, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static KMeans load(String path)
public static MLReader<T> read()
public String uid()
Identifiable
uid
in interface Identifiable
public KMeans copy(ParamMap extra)
Params
defaultCopy()
.copy
in interface Params
copy
in class Estimator<KMeansModel>
extra
- (undocumented)public KMeans setFeaturesCol(String value)
public KMeans setPredictionCol(String value)
public KMeans setK(int value)
public KMeans setInitMode(String value)
public KMeans setDistanceMeasure(String value)
public KMeans setInitSteps(int value)
public KMeans setMaxIter(int value)
public KMeans setTol(double value)
public KMeans setSeed(long value)
public KMeansModel fit(Dataset<?> dataset)
Estimator
fit
in class Estimator<KMeansModel>
dataset
- (undocumented)public StructType transformSchema(StructType schema)
PipelineStage
Check transform validity and derive the output schema from the input schema.
We check validity for interactions between parameters during transformSchema
and
raise an exception if any parameter value is invalid. Parameter value checks which
do not depend on other parameters are handled by Param.validate()
.
Typical implementation should first conduct verification on schema change and parameter validity, including complex parameter interaction checks.
transformSchema
in class PipelineStage
schema
- (undocumented)