public class LogisticRegressionModel extends ClassificationModel<FeaturesType,M>
LogisticRegression.| Modifier and Type | Method and Description |
|---|---|
LogisticRegressionModel |
copy(ParamMap extra)
Creates a copy of this instance with the same UID and some extra params.
|
double |
intercept() |
int |
numClasses()
Number of classes (values which the label can take).
|
M |
setProbabilityCol(String value) |
LogisticRegressionModel |
setThreshold(double value) |
DataFrame |
transform(DataFrame dataset)
Transforms dataset by reading from
featuresCol, and appending new columns as specified by
parameters:
- predicted labels as predictionCol of type Double
- raw predictions (confidences) as rawPredictionCol of type Vector
- probability of each class as probabilityCol of type Vector. |
String |
uid() |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType) |
StructType |
validateAndTransformSchema(StructType schema,
boolean fitting,
DataType featuresDataType)
Validates and transforms the input schema with the provided param map.
|
Vector |
weights() |
setRawPredictionColsetFeaturesCol, setPredictionCol, transformSchematransform, transform, transformequals, getClass, hashCode, notify, notifyAll, toString, wait, wait, waitclear, copyValues, defaultParamMap, explainParam, explainParams, extractParamMap, extractParamMap, get, getDefault, getOrDefault, getParam, hasDefault, hasParam, isDefined, isSet, paramMap, params, set, set, set, setDefault, setDefault, setDefault, shouldOwn, validateParamsinitializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarningpublic String uid()
public Vector weights()
public double intercept()
public LogisticRegressionModel setThreshold(double value)
public int numClasses()
ClassificationModelnumClasses in class ClassificationModel<Vector,LogisticRegressionModel>public LogisticRegressionModel copy(ParamMap extra)
Paramscopy in interface Paramscopy in class Model<LogisticRegressionModel>extra - (undocumented)public StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
public M setProbabilityCol(String value)
public DataFrame transform(DataFrame dataset)
featuresCol, and appending new columns as specified by
parameters:
- predicted labels as predictionCol of type Double
- raw predictions (confidences) as rawPredictionCol of type Vector
- probability of each class as probabilityCol of type Vector.
transform in class ClassificationModel<FeaturesType,M extends org.apache.spark.ml.classification.ProbabilisticClassificationModel<FeaturesType,M>>dataset - input datasetpublic StructType validateAndTransformSchema(StructType schema, boolean fitting, DataType featuresDataType)
schema - input schemafitting - whether this is in fittingfeaturesDataType - SQL DataType for FeaturesType.
E.g., VectorUDT for vector features.