public class GradientDescent extends Object implements Optimizer, Logging
Constructor and Description |
---|
GradientDescent(Gradient gradient,
Updater updater) |
Modifier and Type | Method and Description |
---|---|
Vector |
optimize(RDD<scala.Tuple2<Object,Vector>> data,
Vector initialWeights)
:: DeveloperApi ::
Runs gradient descent on the given training data.
|
static scala.Tuple2<Vector,double[]> |
runMiniBatchSGD(RDD<scala.Tuple2<Object,Vector>> data,
Gradient gradient,
Updater updater,
double stepSize,
int numIterations,
double regParam,
double miniBatchFraction,
Vector initialWeights)
Run stochastic gradient descent (SGD) in parallel using mini batches.
|
GradientDescent |
setGradient(Gradient gradient)
Set the gradient function (of the loss function of one single data example)
to be used for SGD.
|
GradientDescent |
setMiniBatchFraction(double fraction)
:: Experimental ::
Set fraction of data to be used for each SGD iteration.
|
GradientDescent |
setNumIterations(int iters)
Set the number of iterations for SGD.
|
GradientDescent |
setRegParam(double regParam)
Set the regularization parameter.
|
GradientDescent |
setStepSize(double step)
Set the initial step size of SGD for the first step.
|
GradientDescent |
setUpdater(Updater updater)
Set the updater function to actually perform a gradient step in a given direction.
|
equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait
initializeIfNecessary, initializeLogging, isTraceEnabled, log_, log, logDebug, logDebug, logError, logError, logInfo, logInfo, logName, logTrace, logTrace, logWarning, logWarning
public static scala.Tuple2<Vector,double[]> runMiniBatchSGD(RDD<scala.Tuple2<Object,Vector>> data, Gradient gradient, Updater updater, double stepSize, int numIterations, double regParam, double miniBatchFraction, Vector initialWeights)
data
- - Input data for SGD. RDD of the set of data examples, each of
the form (label, [feature values]).gradient
- - Gradient object (used to compute the gradient of the loss function of
one single data example)updater
- - Updater function to actually perform a gradient step in a given direction.stepSize
- - initial step size for the first stepnumIterations
- - number of iterations that SGD should be run.regParam
- - regularization parameterminiBatchFraction
- - fraction of the input data set that should be used for
one iteration of SGD. Default value 1.0.
public GradientDescent setStepSize(double step)
public GradientDescent setMiniBatchFraction(double fraction)
public GradientDescent setNumIterations(int iters)
public GradientDescent setRegParam(double regParam)
public GradientDescent setGradient(Gradient gradient)
public GradientDescent setUpdater(Updater updater)