PredictionModel#
- class pyspark.ml.PredictionModel[source]#
 Model for prediction tasks (regression and classification).
Methods
clear(param)Clears a param from the param map if it has been explicitly set.
copy([extra])Creates a copy of this instance with the same uid and some extra params.
explainParam(param)Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
Returns the documentation of all params with their optionally default values and user-supplied values.
extractParamMap([extra])Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
Gets the value of featuresCol or its default value.
Gets the value of labelCol or its default value.
getOrDefault(param)Gets the value of a param in the user-supplied param map or its default value.
getParam(paramName)Gets a param by its name.
Gets the value of predictionCol or its default value.
hasDefault(param)Checks whether a param has a default value.
hasParam(paramName)Tests whether this instance contains a param with a given (string) name.
isDefined(param)Checks whether a param is explicitly set by user or has a default value.
isSet(param)Checks whether a param is explicitly set by user.
predict(value)Predict label for the given features.
set(param, value)Sets a parameter in the embedded param map.
setFeaturesCol(value)Sets the value of
featuresCol.setPredictionCol(value)Sets the value of
predictionCol.transform(dataset[, params])Transforms the input dataset with optional parameters.
Attributes
Returns the number of features the model was trained on.
Returns all params ordered by name.
Methods Documentation
- clear(param)#
 Clears a param from the param map if it has been explicitly set.
- copy(extra=None)#
 Creates a copy of this instance with the same uid and some extra params. The default implementation creates a shallow copy using
copy.copy(), and then copies the embedded and extra parameters over and returns the copy. Subclasses should override this method if the default approach is not sufficient.- Parameters
 - extradict, optional
 Extra parameters to copy to the new instance
- Returns
 ParamsCopy of this instance
- explainParam(param)#
 Explains a single param and returns its name, doc, and optional default value and user-supplied value in a string.
- explainParams()#
 Returns the documentation of all params with their optionally default values and user-supplied values.
- extractParamMap(extra=None)#
 Extracts the embedded default param values and user-supplied values, and then merges them with extra values from input into a flat param map, where the latter value is used if there exist conflicts, i.e., with ordering: default param values < user-supplied values < extra.
- Parameters
 - extradict, optional
 extra param values
- Returns
 - dict
 merged param map
- getFeaturesCol()#
 Gets the value of featuresCol or its default value.
- getLabelCol()#
 Gets the value of labelCol or its default value.
- getOrDefault(param)#
 Gets the value of a param in the user-supplied param map or its default value. Raises an error if neither is set.
- getParam(paramName)#
 Gets a param by its name.
- getPredictionCol()#
 Gets the value of predictionCol or its default value.
- hasDefault(param)#
 Checks whether a param has a default value.
- hasParam(paramName)#
 Tests whether this instance contains a param with a given (string) name.
- isDefined(param)#
 Checks whether a param is explicitly set by user or has a default value.
- isSet(param)#
 Checks whether a param is explicitly set by user.
- set(param, value)#
 Sets a parameter in the embedded param map.
- setFeaturesCol(value)[source]#
 Sets the value of
featuresCol.New in version 3.0.0.
- setPredictionCol(value)[source]#
 Sets the value of
predictionCol.New in version 3.0.0.
- transform(dataset, params=None)#
 Transforms the input dataset with optional parameters.
New in version 1.3.0.
- Parameters
 - dataset
pyspark.sql.DataFrame input dataset
- paramsdict, optional
 an optional param map that overrides embedded params.
- dataset
 - Returns
 pyspark.sql.DataFrametransformed dataset
Attributes Documentation
- featuresCol = Param(parent='undefined', name='featuresCol', doc='features column name.')#
 
- labelCol = Param(parent='undefined', name='labelCol', doc='label column name.')#
 
- numFeatures#
 Returns the number of features the model was trained on. If unknown, returns -1
New in version 2.1.0.
- params#
 Returns all params ordered by name. The default implementation uses
dir()to get all attributes of typeParam.
- predictionCol = Param(parent='undefined', name='predictionCol', doc='prediction column name.')#
 
- uid#
 A unique id for the object.